3.2040 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2}} \, dx\)

Optimal. Leaf size=48 \[ \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}} \]

[Out]

2/5*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c/d/(e*x+d)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {648} \[ \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(3/2),x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(5*c*d*(d + e*x)^(5/2))

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx &=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 37, normalized size = 0.77 \[ \frac {2 ((d+e x) (a e+c d x))^{5/2}}{5 c d (d+e x)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(3/2),x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(5/2))/(5*c*d*(d + e*x)^(5/2))

________________________________________________________________________________________

fricas [A]  time = 1.03, size = 74, normalized size = 1.54 \[ \frac {2 \, {\left (c^{2} d^{2} x^{2} + 2 \, a c d e x + a^{2} e^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{5 \, {\left (c d e x + c d^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*e*x + a^2*e^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c*d*e*x +
 c*d^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/(e*x + d)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 50, normalized size = 1.04 \[ \frac {2 \left (c d x +a e \right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}{5 \left (e x +d \right )^{\frac {3}{2}} c d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)/(e*x+d)^(3/2),x)

[Out]

2/5*(c*d*x+a*e)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)/c/d/(e*x+d)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.28, size = 43, normalized size = 0.90 \[ \frac {2 \, {\left (c^{2} d^{2} x^{2} + 2 \, a c d e x + a^{2} e^{2}\right )} \sqrt {c d x + a e}}{5 \, c d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*e*x + a^2*e^2)*sqrt(c*d*x + a*e)/(c*d)

________________________________________________________________________________________

mupad [B]  time = 0.78, size = 62, normalized size = 1.29 \[ \frac {\left (\frac {4\,a\,e\,x}{5}+\frac {2\,c\,d\,x^2}{5}+\frac {2\,a^2\,e^2}{5\,c\,d}\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\sqrt {d+e\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^(3/2),x)

[Out]

(((4*a*e*x)/5 + (2*c*d*x^2)/5 + (2*a^2*e^2)/(5*c*d))*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x)^
(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(d + e*x)**(3/2), x)

________________________________________________________________________________________